

GANPATI INSTITUTE OF ENGINEERING AND TECHNOLOGY (POLY), JAGATPUR, CUTTACK
LESSON PLAN OF 4TH SEMESTER (2025-2026)

DISCIPLINE : CIVIL ENGG.	SEMESTER-4 TH	NAME OF THE TEACHING FACULTY: PRIYABRATA TRIPATHY (LECTURER)	
SUBJECT: THEORY OF STRUCTURE (Th.2)	NO. OF DAYS/WEEK CLASS ALLOTTED:3	SEMESTER FROM :22/12/2025 TO:18/04/2026 NO. OF WEEKS:17	
WEEK	CLASS DAY	THEORY/PRACTICAL TOPICS	
1 st	1 st	Direct and Bending Stresses in vertical members Introduction to axial and eccentric loads	
	2 nd	eccentricity about one principal axis only, nature of stresses	
	3 rd	Maximum and minimum stresses, resultant stresses	
2 nd	1st	distribution diagram.	
	2nd	Condition for no tension or zero stress at extreme fiber	
	3rd	Limit of eccentricity	
3 rd	1st	core of section for rectangular and circular cross sections	
	2nd	Middle third rule.	
	3rd	Chimneys of circular cross section subjected to wind pressure	
4 th	1st	Maximum and minimum stresses	
	2nd	resultant stresses and distribution diagram at base.	
	3rd	Analysis of dams subjected to horizontal water pressure	
5 th	1st	conditions of stability, Maximum and minimum stresses,	
	2nd	resultant stresses and distribution diagram at base.	
	3rd	Slope and Deflection Concept of slope and deflection	
6 th	1st	stiffness of beams,	
	2nd	Relation among bending moment, slope, deflection and radius of curvature, (no derivation).	
	3rd	Double integration method to find slope and deflection of cantilever concentrated load and uniformly distributed load on entire span.	
7 th	1st	Double integration method to find slope and deflection of simply supported beams subjected to concentrated load and uniformly distributed load on entire span.	
	2nd	Problem practice	
	3rd	Problem practice	
8 th	1st	Macaulay's method for slope and deflection, application to cantilever	
	2nd	simply supported beam subjected to concentrated and uniformly distributed load on entire span.	
	3rd	Determinate and Indeterminate structures (Fixed and Continuous Beam)	
9 th	1st	Concept of Determinate and Indeterminate structures	
	2nd	Concept of fixity, effect of fixity, advantages and disadvantages of fixed beam over simply supported beam.	
	3rd	Principle of superposition	
10 th	1st	Fixed end moments from first principle for beam subjected to point load, UDL over entire span	
	2nd	Fixed end moments from first principle for beam subjected to point load, UDL over entire span	
	3rd	Problem practice	
11 th	1st	Problem practice	

Tripathy
25/12/25

	2nd	Definition, effect of continuity, nature of moments induced due to continuity
	3rd	concept of deflected shape, practical examples.
12 th	1st	Clapeyron's theorem of three moment (no derivation), Application of Clapeyron's theorem maximum up to three spans
	2nd	and two unknown support moment only,
	3rd	Support at same level spans having same and uniform moment of inertia subjected to concentrated loads
13 th	1st	uniformly distributed loads over entire span.
	2nd	Concept of influence line diagram (ILD)
	3rd	Problem practice
14 th	1st	Problem practice
	2nd	Moment distribution method Introduction to moment distribution method
	3rd	Sign convention, Carry over factor, stiffness factor, distribution factor.
15 th	1st	Application of moment distribution method to various types of continuous beams
	2nd	subjected to concentrated loads
	3rd	uniformly distributed load over entire span having same
16 th	1st	different moment of inertia, supports at same level, up to three spans and two unknown support moments only
	2nd	Introduction to portal frames – Symmetrical and unsymmetrical portal frames with the concept of Bays and stories.
	3rd	Simple trusses Types of trusses (Simple, Fink, compound fink, French truss, pratt truss, Howe truss, North light truss, King post and Queen post truss)
17 th	1st	Calculate support reactions for trusses subjected to point loads at joints
	2nd	Calculate forces in members of truss using Method of joints and Method of sections.

B. B.
23/12/25

LECTURER

B. B.
23/12/2025

SR.LECTURER

Sr. Lecturer
Civil Engg. Dept.
G.I.E.T(Poly), Jagatpur, Ctc

L
PRINCIPAL 23/12/21

Principal
GIET (Polytechnic)
Jagatpur, Cuttack